
A Measurement Based Memory Performance

Evaluation of High Throughput Servers

Garba Isa Yau and Abdul Waheed

E-mail: fdygarba, awaheedg@ccse.kfupm.edu.sa
Computer Engineering Department

King Fahd University of Petroleum and Minerals

P.O. Box 909 KFUPM

Dhahran 31261, Saudi Arabia

Phone +966-3-860-1489 Fax +966-3-860-2440

Abstract

Performance of high throughput servers largely depends on memory issues like on-chip

cache, main and virtual memory, and disk. According to Moore's law, processor speed has

been roughly doubling every eighteen months while memory and disk only get faster at about

10% per year. Bottleneck in server performance has shifted from processors to memory

and disk. Memory hierarchy performance is a limiting factor in the performance of high

throughput servers. In this work, we are conducting measurement-based performance study

of key high throughput servers namely: streaming media servers and web servers. Our aim is to

identify where on-chip cache and memory becomes bottleneck in the performance of this high

throughput servers. We carry out measurement based study of memory performance of key

commercial high throughput servers: Darwin streaming server and Windows media server,

Apache web server and Microsoft Internet information server (IIS). Our study shows that

under stringent clients' demand on this servers, performance degrades due to high cache misses

and page faults, rendering the memory hierarchy less eÆcient, and signi�cant bottleneck itself.

Keywords: streaming media, encoding rate, cache miss, page fault, video on demand, live video

broadcast, web cache.

1 INTRODUCTION

Growing demands of the Internet requires high performance servers for such applications like World

Wide Web and real-time multimedia applications. Web servers, streaming servers and proxy servers

are essentially high throughput servers that normally serve a large number of clients. The continuous

explosion of the Internet further makes demand on these servers very high and stringent; hence the

performance of these servers must meet up with the demands in today's Internet applications and large

number of clients. Due to the growing interest in the development of World Wide Web applications

1



targeted at commerce and other critical applications, the performance of the Web server is a key aspect

in the design of a Web system. The objective is to ful�ll the emerging requirement of giving access to an

ever increasing amount of requests for information represented with text, image, audio and video coming

from a large number of clients distributed across the Internet. Similarly, since its introduction in early

1990s, the concept of streaming media has experienced a dramatic growth and transformation from a

novel technology into one of the mainstream manners in which people experience the Internet today as

the concept streaming media has now been seamlessly integrated with the World Wide Web. Websites

now provide link to multmedia contents which will be subsequently served by streaming media servers.

This growth is facilitated by progress in the development of various core technologies driving the server

software and hardware.

EÆcient performance of these servers is a key to the success of any site intending to serve its contents

to a large clients with varying demands. Performance of these servers largely depends on hardware

and software, especially now that the servers are deployed on high speed networks that would not be

bottleneck. Once CPU was a bottleneck, but tremendous progress in technology that leads to explosive

growth in CPU speed and capabilities has shifted this bottleneck else where. Memory, I/O and network are

now potential bottlenecks on performance of servers that serve a large number of clients especially those

with stringent timing requirements like video-on-demand and real-time audio/video broadcast. Memory

subsystem in particular is a key factor in performance degradation as memory technology remains far

lagging behind processors. This speed disparity leads to the memory hierarchy in computer architecture

which depends on data locality of reference. The question we raise is: to which extent is the memory

hierarchy, with on-chip cache and main memory bene�cial to Internet high throughput servers?

We present an experimental study of the memory performance of some high throughput servers.

Our empirical studies focus on two streaming media servers: Darwin streaming server and Windows

media server, and also two Web servers: Apache web server and Microsoft Internet Information Server.

We collected performance related measurements and low level measurements showing on-chip cache and

memory performance, and CPU utilization.

The rest of this paper is organized as follows. In section 2 we outline some background material

which forms the bases of our motivation while in section 3 we review some related work on streaming

media servers and Web servers. Experimental setup is outlined in section 4 and section 5 discusses the

experimental results. We outline our observation on impact of operating system on the servers in section

6. We talk about the conclusion and future work in section 7.

2 BACKGROUND AND MOTIVATION

In this section we shall provide a brief overview of three high throughput servers that are highly used in

the Internet, viz: streaming media servers, web servers and web proxy servers. This servers are now the

de factor content provision servers on the Internet and their performance is highly signi�cant for eÆcient

2



content distribution on the Internet.

2.1 Streaming Media Servers

Streaming media is a technology that makes it possible for a client to experience a multimedia presentation

on the y, that is allowing a client to playback the multimedia content as it is downloaded. The media

content is not stored on the disk, but rather played as it is streamed to the client. Streaming media

servers accept client requests for speci�c media objects and stream them from their storage location in

the case of on-demand contents or directly from the encoder in the case of live media broadcast. To

ensure quality streaming, the servers must process multimedia data under timing constraints that will

guarantee acceptable QoS (quality of service).

The streaming media technology can be broadly grouped into six key areas, namely: video com-

pression, application-layer QoS control, continuous media distribution service, streaming servers, media

synchronization mechanisms and protocols for streaming media. Each of these six areas is a basic building

block for streaming media architectures. Wu et al [1] presents a detail discussion on these areas.

It is important to mention that two modes are used for streaming media distribution over the Internet,

namely, live broadcasting and on-demand streaming. In live broadcasting, users watch live events while

on-demand streaming provides access for already stored media.

2.2 Web Servers

The purpose of a Web server is to provide documents to Web clients as they request for these documents.

A Web server operates in the following way. The server listens on a designated port (usually port 80) for

a request from a Web client to establish a TCP connection. Once a TCP connection has been opened

and the client has made its request, the server must respond to that request. Web servers and clients

communicate based on the application layer protocol HTTP (Hypertext Transfer Protocol).

The steps required to process a typical request (i.e. a static GET) are outlined in [2] as follows.

� Step 1: is called to get a new connection.

� Step 2: is called to determine the remote host (for logging purposes).

� Step 3: is called on the socket to get the HTTP request.

� Step 4: is called to disable the Nagle algorithm.

� Step 5: is called to determine the time of the request.

� Step 6: the request is parsed, identifying the appropriate �le to send.

� Step 7: is called to obtain the �le status and size.

� Step 8 is called on the requested �le.

3



� Step 9: is called on the �le descriptor to read the �le into the server.

� Step 10: is called on the socket to send the HTTP header to the client.

� Step 11: is called on the socket to send the �le to the client.

� Step 12: is called to close the �le.

� Step 13: is called to shutdown the connection.

� Step 14: is called on the log �le descriptor to log the request.

Web servers are also used for streaming media. Web servers use the HTTP protocol and since the

HTTP protocol was originally designed for serving static documents, it was not particularly suited for

real-time streaming. Lack of QoS guarantee in the design of HTTP protocol and the use of TCP can

cause substantial uctuation in the delivery times of media, leading to unacceptable media quality at the

client end.

Essentially, the performance of proxy servers is very similar to that of Web servers especially if the

document requested is in the web cache. When a client makes a request for a web object to a web proxy

server, the server examines its web cache and if it �nds it in the cache, it returns the object to the client

without contacting the origin Web server. This is referred to as cache hit. However, if the object is not

available in its cache, it retrieves the object from the origin server, keeps a copy and serves it to the

client. When the object is not in the web cache, we say there is a cache miss.

2.3 Memory Hierarchy

There has been tremendous progress in microprocessor technology that leads to high speed CPUs. Also,

advances in memory and magnetic disk technology have signi�cantly led to improvement in memory

density and magnetic disk density much more than access and cycle times. Density of semiconductor

DRAM increases by 60% per year, quadrupling in three years, but cycle time has improved very slowly,

decreasing by about one-third in 10 years. In a similar fashion, magnetic disk density has been improving

by about 50% per year, almost quadrupling in three years. Access time has improved by only one-third in

10 years [3]. To alleviate the problem of widening performance gap between processor and main memory,

computer architecture now incorporates the memory hierarchy system in which data caches are now

widely used for hiding memory latency. Memory hierarchy is based on the concept of principle of locality

of reference - temporal and spatial. Temporal locality states that recently accessed data are likely to be

accessed in the near future while spatial locality says that data whose addresses are near one another

tend to be referenced close together in time [3]. Although caches go a long way in improving performance

for applications with small working data sets and large amounts of spatial and temporal locality, allowing

a small cache to provide enough storage to hold most of the useful data required by the program at

any given time, some programs fail to use them e�ectively because of poor data locality and very large

4



working data sets that cannot be accommodated in the cache [3]. The consequence is signi�cant lost in

performance due to cache misses and processor stall cycles resulting from the misses.

3 RELATED WORK

In this section, we review related work on design and performance of streaming media servers and Web

servers.

3.1 Streaming Media Servers

Growing deployment and use of streaming media servers is already drawing the attention of researchers.

Performance of a streaming server is a key factor contributing to the quality of the multimedia content

for the end-users. Shenoy et al [4] highlighted some fundamental issues arising in multimedia server

design. Technical design challenges such as storage and retrieval of multiresolution data, scalability and

management were presented. Sohn et al [5] looked at the performance of a small-scale VOD server. They

conducted a measurement-based study in which they outlined the predictability of the real-time scheduler

and the performance of the VOD server. A signi�cant amount of work is reported in the literature on

the disk storage performance for streaming media servers. Due to large volumes of video and other

multimedia �les, storage and retrieval techniques play an important role in the performance of the server

too. A storage hierarchy to design a low-cost cache for a movie on demand (MOD) server was proposed

in [6]. The hierarchy consists of a disk that stores the popular movies and a small amount of RAM bu�ers

which store only portions of the movies. Due to low cost of disks, the cost of a MOD server based on the

proposed architecture is substantially less than one in which the entire movie is loaded into RAM.

Some studies of multimedia servers pay attention to I/O subsystems due to the high throughput

demand of the servers. In fact, streaming media servers are often I/O bound. A study by Batatia et al [7]

focuses on the design of an I/O subsystem for a continuous media server. They propose several improved

architectures based on an existing device: Intel i960RP I/O processor, and evaluate their performance.

They report that utilization of the I/O processor solved the main memory bottleneck problem but created

a new bottleneck in i960RP memory. I/O performance in multimedia servers has also been investigated

using simulation [8]. Various I/O issues in multimedia systems have been discussed in [9].

Our literature search reveals that researchers did not pay much attention to the memory performance

of the streaming server itself. An exception is the study conducted by Sohoni et al [10] which rather study

the memory system performance of multimedia applications at the client end. Despite poor temporal

locality, at the client's application end, high cache hit ratio is reported which is attributed to factors like

block partitioning algorithm employed, signi�cant data reuse and excellent spatial locality of continuous

multimedia data. However, this study does not address server performance and its high throughput

demand.

5



3.2 Web Servers

Web servers are obviously the key servers in the Internet today since Web traÆc accounts for substantial

part of the traÆc on the Internet. There has been tremendous amount of research activities onWeb servers

ranging from performance studies, workload characterization [11] and even security issues [12, 13]. But

just like the case of streaming media servers, there is no signi�cant work on the performance of processor

on-chip cache and memory subsystem. Iyengar et al [14] performance study focused on a method of

improving the performance of the Web server in the situation that the CPU becomes the limiting resource.

In [15] a new Web server mechanism was reported. Performance results were presented showing the

scalability and eÆciency of the proposed design. This is an attempt to improve the performance of the

Web server itself and not the underlaying hardware.

Performance characteristics were also studied based on comparative studies using Web server bench-

marking tools. [16] conducted measurement based performance study of Apache and Microsoft Internet

Information server. Their study focused on comparative performance on same hardware, but no attention

was paid on the impact of the underlaying hardware. Trecordi and Verger [17] studied the main com-

ponent a�ecting the performance and scalability of Web servers. They take into account the impacts of

the server software architecture, operating system and the underlaying server hardware. They reported

numerical results that reveals that the performance and scalability of WWW servers heavily depend on a

lot of parameters that should be properly tuned. Though this study discusses the processor on-chip cache

and virtual memory system, no measurement on any metric related to the cache and virtual memory was

reported.

4 EXPERIMENTAL SETUP AND TEST BED

We conduct measurement based performance evaluation of streaming media servers and Web servers. In

all the cases, our primary focus is the on-chip cache and memory behavior and the impact on throughput.

In this section we describe our hardware, setup, tools, metrics and factors, and experiments.

4.1 Hardware

For all the experiments, our test bed comprises of a dual boot server machines, booting either Red Hat

Linux 7.2 (kernel 2.4.10) or Windows 2000 server. We also have dual boot client machines that run same

OS as the server machine. The setup consists of a closed-LAN with a Cisco 1 Gbps multilayer switch

(catalyst 3550). Our server hardware comprises of Pentium IV 2.0 GHz, 256 MB SDRAM, single 40 GB

EIDE hard drive (Western Digital WD400) and 3Com 1 Gbps Ethernet NIC. Each of the client machine

consists of Pentium III 300 MHz, 96 MB RAM and 100Mbps NIC.

6



4.2 Streaming Media Servers

The experimental setup is a LAN in which clients submit request for streaming media objects to the

server. The streaming server returns the object to the client.

4.2.1 Metrics and factors

Our metrics of interest are:

� L1 cache miss

� L2 cache miss

� page fault rate

� server aggregate throughput

� server cpu utilization

To observe our metrics, we vary the following factors:

� number of streams (streaming clients)

� media encoding rate (56kbps and 300kbps)

� stream distribution (unique or multiple media)

We setup a video-on-demand scenario where clients request for stored compressed video streams from the

server.

4.2.2 Tools

We collect measurements for our metrics using a number of software tools that run on the server machine

in a non-intrusive way. Some tools run on both platforms (Windows and Linux) while others run only

on one platform. However, for platform speci�c tools, we ensure that such tools exhibit very similar

overhead (generally minimally intrusive) on the operating system in question. The following tools were

used:

� Streaming Load Tool - for Windows media server we use microsoft streaming load simulator while

for Darwin streaming media server, we use streaming load simulator. Both simulators operate in

similar manner by making requests for media object through launching a large number of clients.

� Intel VTune performance analyzer (6.1): performance and pro�ling tool that we use to access CPU

on-chip performance counters. It is available for both Windows and Linux

� Windows 2000 'performance': a Windows platform performance tool.

7



� Netstat: a tool for measuring bandwidth and observing connection status. It is available on both

Windows and Linux platforms.

� Linux tools: vmstat, iostat and sar.

4.3 Web Servers

For our experiments on Web servers, only the server OS is changed to accomodate the appropriate

Web server. The clients and webmaster all run on Linux, hence, we only needed to dual boot the

server machine. Our experimental testbed comprises of the hardware we described earlier. We used

�ve client machines and a Webmaster machine for control of clients using Webstone benchmarking tool

[18]. Webstone simulates a large number of clients accessing web documents. Webstone considers the

Web server as a black-box, hence to obtain low level measurement on the server itself, we run our other

tools on the server machine. With this, we were able to collect memory related measurements and CPU

utilization on the server.

In our experiments on Web servers, we only consider document transfers. We did not include requests

that require processing at the server side like CGI (common gateway interface), Microsoft ASP (active

server page) or any server-side processing.

4.3.1 Software tools

� WebStone: a con�gurable benchmark tool that allows performance measurement of Web servers.

WebStone is originally developed by Silicon Graphics. WebStone 2.5 is Mindcraft's enhancement

to WebStone 2.0.1 to improve reliability and portability as well as to make tests more reproducible.

WebStone creates a load on a Web server by simulating the activity of multiple clients, which are

called Web clients and which can be thought of as users, Web browsers, or other software that

retrieves �les from a Web server. In other to create large loads on a Web server, WebStone is able

to distribute Web clients among client computers. The Webmaster is the program that controls all

of the testing done by WebStone. With WebStone, we can measure average and maximum connect

time (delay), average connection rate, average and maximum response time and data throughput

rate.

� Intel VTune Performance Analyzer

� Platform speci�c tools: vmstat, sar, iostat and Windows 2000 'performance'.

4.3.2 Metrics and Factors

We have the following metrics:

� L1 cache miss

8



� L2 cache miss

� Page fault rate

� Aggregate server throughput

� Number of transactions/sec (connection rate)

� Average latency (delay)

� CPU utilization

We observe our metrics while varying the following factors

� Number of Web clients

� Web document size

5 RESULTS AND DISCUSSIONS

In this section, we present the results of our measurement based performance study on two streaming

media servers and two Web servers. For the sake of clarity of these discussions, we present the results on

streaming servers in a di�erent section from the Web servers. We report measurements obtained using

tools described in previous sections.

5.1 Streaming Media Servers

5.1.1 Cache Performance

Figures 1 and 2 show the L1 cache behavior under di�erent con�gurations of clients, encoding rate and

stream distribution. Measurements for both servers are reported. both �gures show increase in cache

misses as the number of clients increases. Thought not to a large extend, the stream distribution and

encoding rate also a�ect the miss rate. We observe the worse case cache misses in both L1 and L2 when

there is a large number of clients requesting multiple streams at 300kbps encoding rate. For this case,

we started observing clients being refused connection by the server, which eventually makes the client to

time out. We show L2 cache behavior for 300kbps encoding in Figure 3. For all these cases, Windows

media server exhibits lower L1 and L2 cache misses. It becomes obvious that as a result of large working

data set and lack of data reuse by the server, thrashing occurs in the CPU cache which renders the cache

ine�ective for this type of application.

5.1.2 Memory Performance

We consider main memory performance in terms of page fault rate. Any data referenced in the memory

that is not available would have to be fetched from the disk, an expensive and slow process. Disk access

9



1

101

201

301

401

501

601

701

801

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)
n

u
m

b
er

 o
f 

ca
ch

e 
m

is
se

s 
(m

ill
io

n
s)

dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 1: L1 cache misses for 56kbps encoding rate

1

101

201

301

401

501

601

701

801

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)

n
u

m
b

er
 o

f 
ca

ch
e 

m
is

se
s 

(m
ill

io
n

s)

dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 2: L1 cache misses for 300kbps encoding rate

is very slow especially if there are lots of disk references within a short duration. This is what we observe

when we have clients requesting di�erent media �les. Figure 4 shows the page fault rate for clients

requesting multiple streams at 300kbps. For cases where a unique stream is requested, this can be served

from the memory and we observe a fairly constant page fault rate, which indicates low disk activity.

However, as the clients request multiple streams, the page fault rate steadily increases with the number

of clients. This is due to larger volume of data that have to be fetched from the disk into the main

memory as the number of requesting streams grow larger.

The consequence of this high page fault rate is clients' timeout. It is intuitive that as more disk

activity is involved, the server responds to clients' request very slowly leading to some of the clients to

timeout after waiting for response for a long period of time .

5.1.3 Throughput and CPU Utilization

We show the throughput for 300kbps encoding rate and the corresponding cpu utilization. In Figure 5,

the throughput for unique streams increases with the number of clients for both Darwin streaming server

and Windows media server. However, for multiple streams, the throughput hardly increases beyond 200

streams. In fact, at 400 clients, we started observing clients timeout in Windows media server while we

observe timeout in Darwin streaming server at 1000 streams. In all these cases, Windows media server

has higher throughput. The corresponding CPU utilization for this con�guration is shown in Figure 6.

10



0

500

1000

1500

2000

2500

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)
n

u
m

b
er

 o
f 

ca
ch

e 
m

is
se

s 
(m

ill
io

n
s)

dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 3: L2 cache misses for 300kbps encoding rate

0

100

200

300

400

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)

p
ag

e 
fa

u
lt

s 
/ s

ec dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 4: Page fault rate for 300kbps encoding rate

There is increase in CPU utilization as the number of clients increases. For unique stream access, the

CPU utilization increases all the way up to 1000 streams. CPU utilization begins to fall when the number

of clients timing out increases, thereby reducing the e�ective number of clients requesting media streams.

Although this appears strange in the case of Darwin streaming server in which clients timeout begins

at 1000 multiple streams, we still attribute the drop in cpu utilization after 300 multiple streams to low

volume of data served to the clients.

1

10001

20001

30001

40001

50001

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)

th
ro

u
g

h
p

u
t 

(k
b

p
s) dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 5: Server throughput for 300kbps encoding rate

11



0

10

20

30

40

50

60

70

80

90

1 10 100 200 300 400 500 600 700 1000

number of streams (clients)
cp

u
 u

ti
liz

at
io

n
 (

%
)

dss, unique

dss, multiple

wms, unique

wms, multiple

Figure 6: Server CPU utilization for 300kbps encoding rate

5.2 Web Servers

In this section, we discuss the measurement based performance study results we obtain for Apache and

IIS servers.

5.2.1 Web Transactions

To make our discussion clearer, we would start with looking at the relation between web document size

and number of transactions. The size of the document requested by a web client is highly signi�cant on

the performance of the Web server in terms of both hardware and software. Looking at Figure 7 we see

that as the document size increases, the number of transactions become smaller. For a large document

size, the server and client must maintain a connection for a longer time to transfer the �le to the client,

hence at any instance, the e�ective number of clients hooked to the server becomes signi�cantly low,

thereby leading to the low activity and high latency for waiting clients as we would show when we discuss

latency. Generally, the two servers perform poorly for very small web documents. This observation is

further supported by another study on Web servers by Hu et al [15].

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

T
ra

n
sa

ct
io

n
s/

se
c apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 7: Web server transactions per seconds

12



5.2.2 Cache Performance

As shown in Figures 8 and 9, both L1 and L2 caches perform poorly for small documents. Though this is

surprising, but as we mention the e�ect of document size on number of transactions; if the document size

is small, more connections are established and released within a short time. This creates more activity

in the processor cache as it even shows in the CPU utilization. The CPU utilization of the server is

shown in Figure 13. Apache performs worst in terms of cache misses. Apache is a process-based server,

forking several processes that serially accept new connections. Although Apache server tries to minimize

the overhead of forking new processes by pre-forking a pool of processes at initialization, however, during

heavy loads, the server resorts to forking a new process for every request. This highly involves the CPU

and leads to excessive cache activity leading to high cache misses. Generally, the two servers have poor

cache performance for small documents.

0

100

200

300

400

500

600

700

800

900

1000

5B 50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

L
1 

ca
ch

e 
m

is
se

s 
(m

ill
io

n
s)

apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 8: Web server L1 cache misses

0

500

1000

1500

2000

2500

5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

L
2 

ca
ch

e 
m

is
se

s 
(m

ill
io

n
s)

apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 9: Web server L2 cache misses

13



5.2.3 Memory Performance

We observe high page fault rate when the document size is large. This is quite obvious as large documents

must be continuously fetched from the disk to the memory and to the network. For a small document,

this might be served from the memory since the entire �le can reside in the memory. The page fault rate

is shown in Figure 10.

0

100

200
300

400

500

600

700

800

900

1000
5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

p
ag

e 
fa

u
lt

s 
/s

ec apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 10: Web server page fault rate

5.2.4 Other Metrics

Other metrics are latency, throughput and CPU utilization. We observe the peak throughput at 500KB

and 5MB document size. This is shown in Figure 11. For both single client and 400 clients, Apache

server delivers more throughput. Generally, throughput scales with document size. For small document

0

100

200

300

400

500

600

700

5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

T
h

ro
u

g
h

p
u

t 
(M

b
yt

es
/s

ec
)

apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 11: Web server throughput

size, clients generally experience low latency. If the document is large, 5MB and 50MB, the latency

becomes too high and clients might even timeout. It is not surprising as it takes more time to deliver

14



the large �le. Relation of document size to latency is shown in Figure 12. We also show CPU utilization

in Figure 13. It is easy to saturate the server (100% CPU utilization) when the requested document is

small. As we explained earlier, when the requested document is small, the number of transactions per

second (connection rate) becomes high, more connections are setup and torn, hence more CPU activity.

0

50

100

150

200

250

300

350

5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B
File size (Kilobytes)

la
te

n
cy

 (
se

c)

apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 12: Web server latency

0

20

40

60

80

100

120

5B

50
B

50
0B

5K
B

10
K

B

50
K

B

10
0K

B

50
0K

B

5M
B

50
M

B

File size (Kilobytes)

cp
u

 u
ti

liz
at

io
n

 (
%

)

apache, 1 client

apache, 400 clients

IIS, 1 client

IIS, 400 clients

Figure 13: Web server CPU utilization

6 OPERATING SYSTEM IMPACT ON PERFORMANCE

Though it is not our goal to benchmark the performance of the di�erent servers in our study. However,

we suspect that since the servers were run on di�erent platforms, there might be di�erences in memory

behavior due to the operating system. To observe this e�ect, we made a quick memory subsystem

assessment. ECT (extended copy transfer) memperf [19] is a method to characterize the performance of

memory systems. It captures two aspects of the memory hierarchy: its behavior with temporal locality

by varying the working set size (block size) and the spatial locality by varying the access pattern (strides).

15



The calculated value is the transfer bandwidth (for a large amount of data). We present the extended

copy transfer characterization for load sum test. The load test measures the memory load performance

for all the block-sizes and access patterns. Figure 14 shows our memperf microbenchmark result for Linux

and Windows running on the same hardware. Both operating systems show similar memory performance,

with the memory bandwidth decreasing as the block size increases; that is not �tting into cache. The

worst case is when the block size is beyond 512kB which is the size of the level 2 cache. We run test

only for stride = 1. Based on these results, we conclude that di�erence in memory performance by the

individual servers is inherent in the servers themselves and not their host operating system.

0

1000

2000

3000

4000

5000

6000

0.
1K

0.
5K 2K 8K 32

K
12

8K
51

2K 2M 8M 32
M

block size (working set)

M
em

o
ry

 b
an

d
w

id
th

 (
M

B
/s

)

Linux

Windows

Figure 14: Extended copy transfer characterization (stride = 1)

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented the measurement-based evaluation of memory performance of two

streaming media servers and two Web servers. We carry out measurement based performance study to

observe memory performance of these Internet high throughput servers and speci�cally identify where

the on-chip cache and memory subsystem become bottleneck. For streaming media servers, our measure-

ments show that cache and memory subsystem performs worst when there is a large number of clients

requesting multiple media streams at 300kbps encoding rate. Both servers exhibit similar character-

istics in cache/memory performance under identical workload. The large number of cache misses and

page faults leads to signi�cant wastage in CPU cycles and high memory latency, hence a bottleneck on

performance.

Similarly, for the Web servers, we observe that on-chip cache performs worst when the document

is small. Small documents might �t into cache, but the high number of connection setup and tear-o�

signi�cantly involves the processor which leads to high number of cache misses and high CPU utilization.

On the other hand, large document size leads to higher page fault rates since the requested �le must be

continuously retrieved from the disk until it is all served to the requesting client.

16



Since it is obvious from this study that memory could be a major bottleneck in the performance of

Internet high throughput servers, we are looking into ways to alleviate this bottleneck. We are particularly

interested in improving the performance of streaming media servers. Streaming media servers could

be designed to take advantage of the excellent spatial locality in continuous media by incorporating

techniques like lookahead prefetching and demand prefetching. Such techniques can improve cache hit

rate and reduce page fault rates. Our work continues to explore these issues.

Acknowledgement The authors would like to thank King Fahd University of Petroleum and Minerals, Dhahran,

Saudi Arabia for supporting this research e�ort.

References

[1] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, \Streaming video over the internet: Approaches

and directions," IEEE, Transactions on circuit and systems for video technology, vol. 11, pp. 282{300, March

2001.

[2] E. Nahum, T. Barzilai, and D. D. Kandlur, \Performance issues in www servers," IEEE/ACM Transactions

on Networking, vol. 10, February 2002.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. Morgan Kaufmann

Publishers, Inc., 1996.

[4] P. J. Shenoy, P. Goyal, and H. Vin, \Issues in multimedia server design," ACM Computing Surveys, vol. 27,

December 1995.

[5] J. M. Sohn, G. Y. Kim, and T. G. Kim, \Performance measurements of a small-scale vod server based on

the unix," The Third IEEE Symposium on Computers and Communications ISCC'98, June 1998.

[6] B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz, \A disk-based storage architecture for movie on demand

servers," Information Systems, vol. 20, no. 6, p. 465, 1995.

[7] M. Weeks, H. Batatia, and R. Sotudeh, \Improved multimedia server i/o subsystems," Euromicro98, 24th

Conference Proceedings, 1998.

[8] M. Weeks and C. Bailey, \Continuous discrete-event simulation of a continuous-media server i/o subsystems,"

Euromicro 2000, Workshop on Multimedia and Telecommunications, September 2000.

[9] A. L. Reddy and J. Wyllie, \Io issues in a multimedia system," IEEE Computer, vol. 27, pp. 69{74, March

1994.

[10] S. Sohoni, R. Min, Z. Xu, and Y. Hu, \A study of memory system performance of multimedia applications,"

Proceedings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, pp. 206 { 215, 2001.

[11] M. F. Arrit and C. L. William, \Web server workload characterization: The search for invariants," ACM

SIGMETRICS 96, 1996.

[12] K. Krishna and M. Prasant, \Architectural impact of secure socket layer on internet servers," International

conference on computer design (ICCD), September 2000.

17



[13] A. Goldberg, R. Bu�, and A. Schmitt, \Secure web server performance dramatically improved by caching ssl

sessions keys," Workshop on Internet Server Performance, SIGMETRICS '98, June 1998.

[14] A. Iyengar, E. MacNair, and T. Nguyen, \An analysis of web server performance," In Proceedings of the

IEEE 1997 Global Telecommunications Conference (GLOBECOM '97), November 1997.

[15] J. C. Hu, I. Pyarali, and D. C. Schmidt, \Measuring the impact of event dispatching and concurrency models

on web server performance over high-speed networks," In Proceedings of GLOBECOM '97, 1997.

[16] A. O. Sala-Alada and A. Waheed, \Performance comparison of apache and microsoft iis web server," In

Proceedings of International Arab Conference on Information Technology, December 2002.

[17] V. Trecordi and A. Verga, \An experimental study on the performance of www servers," Global Telecommu-

nications Conference, GLOBECOM '96, pp. 22{27, November 1996.

[18] G. Trent and M. Sake, \Webstone: The �rst generation in http server benchmarking." Available:

http://www.sgi.com/Products/Web-FORCE/WebStone.

[19] C. Kurmann and T. Stricker, \Characterizing memory system performance for local and remote accesses in

high end smps, low end smps and clusters of smps," 7th Workshop on Scalable Memory Multiprocessors held

in conjuction with the 25th Annual International Symposium on Computer Architecture ISCA98, June 1998.

Authors biography

Garba Isa Yau received B.Eng (Honours) electrical and electronic engineering from Abubakar Tafawa Balewa

University Bauchi, Nigeria in September, 1998. He joined department of computer engineering, King Fahd Uni-

versity of Petroleum and Minerals as research assistant in January 2001. Currently pursuing Masters Degree in

computer engineering. His research interests focus on systems performance analysis and evaluation, computer

networks and security, and mobile computing. Garba is student member of IEEE.

Abdul Waheed is an assistant professor in Computer Engineering Depatrment at KFUPM. Before joining COE,

he was working at Inktomi Corporation in Foster City, California, USA as a performance engineer in network

products division. He was a research sta� member at NASA Ames Research Center, Mo�ett Field, California,

USA from May 1997 until July 2000. He held a summer position in Concurrent Computing Division at Hewlett-

Packard Research Laboratories in Palo Alto, California, USA in 1994. He received the BSc degree with honors in

Electrical Engineering from University of Engineering and Technology, Lahore, Pakistan in 1991. He received the

MS degree in 1993 and the PhD degree in 1997, both in Electrical Engineering from Michigan State Univeristy,

East Lansing, Michigan, USA. His current research interests include performance evaluation, high-performance

computing and networking systems, and multimedia systems. He has written over twenty refereed conference and

journal papers on related topics. Dr. Waheed is a member of the IEEE Computer Society.

18


